Lemna – Chi Lemna

    Lemna - Chi Lemna Lemna genus freshwater aquarium plants 600 x 600
    Đánh giá bài này

    Species from this Genus – Các cây trong Chi này:


    From Wikipedia, the free encyclopedia
    Kleine Wasserlinse (Entengrütze).JPG  Lemna - Chi Lemna 220px Kleine Wasserlinse  28Entengr C3 BCtze 29
    Common duckweed (Lemna minor)
    Scientific classification
    Kingdom: Plantae
    (unranked): Angiosperms
    (unranked): Monocots
    Order: Alismatales
    Family: Araceae
    Subfamily: Lemnoideae
    Tribe: Lemneae
    Genus: Lemna
    • Staurogeton Rchb.
    • Lenticularia Ség.
    • Lenticula P.Micheli ex Adans.
    • Hydrophace Hallier
    • Telmatophace Schleid.
    • Thelmatophace Godr.
    • Lenticularia P.Micheli ex Montandon

    Lemna is a genus of free-floating aquatic plants from the duckweed family. These rapidly growing plants have found uses as a model system for studies in community ecology, basic plant biology, ecotoxicology, and production of biopharmaceuticals, and as a source of animal feeds for agriculture and aquaculture. Currently, 14 species of Lemna are recognised.[3]


    • 1. Taxonomy and growth habits
    • 2. As a bioassay
    • 3. Production of biopharmaceuticals
    • 4. Duckweed farming
    • 5. Selected species
    • 6. References
    • 7. General readings
    • 8. External links

    Taxonomy and growth habits

    These duckweeds were previously placed in a separate flowering plant family, the Lemnaceae, but they are now considered to be members of the Araceae.[4]

    Lemna species grow as simple free-floating thalli on or just beneath the water surface. Most are small, not exceeding 5 mm in length, except Lemna trisulca, which is elongated and has a branched structure. Lemna thalli have a single root, which distinguishes this genus from the related genera Spirodela and Landoltia.

    The plants grow mainly by vegetative reproduction: two daughter plants bud off from the adult plant. This form of growth allows very rapid colonisation of new water. Duckweeds are flowering plants, and nearly all of them are known to reproduce sexually, flowering and producing seed under appropriate conditions. Certain duckweeds (such as L. gibba) are long-day plants, while others (such as L. minor) are short-day plants.

    When Lemna invades a waterway, it can be removed mechanically, by the addition of herbivorous fish (e.g. grass carp), or, inadvisedly, treated with a herbicide.

    The rapid growth of duckweeds finds application in bioremediation of polluted waters and as test organisms for environmental studies. It is also being used as an expression system for economical production of complex biopharmaceuticals.

    Duckweed meal (dried duckweed) is a good cattle feed. It contains 25-45% protein (depending on the growth conditions), 4.4% fat, and 8-10% fibre, measured by dry weight.

    As a bioassay

    Organisation for Economic Co-operation and Development[5] and U.S. Environmental Protection Agency (US EPA)[6] guidelines describe toxicity testing using L. gibba or L. minor as test organisms. Both of these species have been studied extensively for use in phytotoxicity tests. Genetic variability in responses to toxicants can occur in Lemna, and data are insufficient to recommend a specific clone for testing. The US EPA test uses aseptic technique. The OECD test is not conducted axenically, but steps are taken at stages during the test procedure to keep contamination by other organisms to a minimum. Depending on the objectives of the test and the regulatory requirements, testing may be performed with renewal (semistatic and flow-through) or without renewal (static) of the test solution. Renewal is useful for substances that are rapidly lost from solution as a result of volatilisation, photodegradation, precipitation, or biodegradation.

    Production of biopharmaceuticals

    Lemna has been transformed by molecular biologists to express proteins of pharmaceutical interest. Expression constructs were engineered to cause Lemna to secrete the transformed proteins into the growth medium at high yield. Since the Lemna is grown on a simple medium, this substantially reduces the burden of protein purification in preparing such proteins for medical use, promising substantial reductions in manufacturing costs.[7][8] In addition, the host Lemna can be engineered to cause secretion of proteins with human patterns of glycosylation, an improvement over conventional plant gene-expression systems.[9] Several such products are being developed, including monoclonal antibodies.

    Duckweed farming

    High yields of duckweed with a high protein content can be achieved by careful control of growth conditions. Although duckweed can tolerate temperatures ranging from 6 to 33°C, the optimal growth range is 20 to 28°C. The acceptable pH range is 5 to 9, but better growth is obtained in the pH range of 6.5 to 7.5. A minimum water depth of 1 ft is desirable to prevent excessive temperature swings. High nitrogen levels, for example 20 mM urea, have provided a protein content in the range of 45% by weight. The water may typically contain 60 mg/l of soluble nitrogen and 1 mg/l of phosphorus. Fertiliser is required on a daily basis for optimal growth.

    Duckweed can be farmed organically, with nutrients being supplied from a variety of sources, for example cattle manure, pig waste, biogas plant slurry, or other organic matter in slurry form. Because of the rapid growth of duckweed, daily harvesting is necessary to achieve optimal yields. Harvesting is done such that less than 1 kg/m2 of duckweed remains. Under optimal conditions, a duckweed farm can produce 10 to 30 tons of dried duckweed per hectare per year.[10]

    Selected species

    Section Alatae
    • Lemna aequinoctialis Welw. – lesser duckweed – tropical and subtropical
    • Lemna perpusilla Torr. – minute duckweed – eastern USA, Quebec
    Section Lemna
    • Lemna gibba L. – gibbous duckweed – widespread
    • Lemna minor L. – common duckweed – cosmopolitan
    • Lemna trisulca L. – ivy duckweed – cosmopolitan
    Section Uninerves
    • Lemna minuta Kunth – least duckweed – North + South America
    • Lemna valdiviana Phil. – Valdivia duckweed[11][12] – North and South America
    unknown section
    • Lemna japonica Landolt – Japan, China, Korea, Russian Far East
    • Lemna obscura (Austin) Daubs – USA, Mexico, Bahamas, Colombia, Ecuador
    • Lemna tenera Kurz – Indochina, Sumatra, Northern Territory of Australia
    • Lemna turionifera Landolt – temperate Europe, Asia, North America
    • Lemna yungensis Landolt – Bolivia
    Formerly placed here
    • Landoltia punctata (G.Mey.) Les & D.J.Crawford (as L. oligorrhiza Kurz and L. punctata G.Mey.)
    • Spirodela polyrhiza (L.) Schleid. (as L. polyrhiza L.)
    • Wolffia arrhiza (L.) Horkel ex Wimm. (as L. arrhiza L.)[12]


    1. Jump up^ Kew World Checklist of Selected Plant Families
    2. Jump up^ “Genus: Lemna L.”. Germplasm Resources Information Network. United States Department of Agriculture. 2006-11-03. Retrieved 2013-04-13.
    3. Jump up^ http://www.theplantlist.org/tpl1.1/search?q=Lemna
    4. Jump up^ Bremer, B.; Bremer, K.; Chase, M.W.; Reveal, J.L.; Soltis, D.E.; Soltis, P.S.; Stevens, P.F. (2003). “An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II” (PDF). Botanical Journal of the Linnean Society. 141: 399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x.
    5. Jump up^ SourceOECD: issues
    6. Jump up^ http://www.epa.gov/opptsfrs/publications/OPPTS_Harmonized/850_Ecological_Effects_Test_Guidelines/Drafts/850-4400.pdf
    7. Jump up^ “Biolex Corporate Website”.
    8. Jump up^ Gasdaska, JR; Spencer D; Dickey L (Mar–Apr 2003). “Advantages of Therapeutic Protein Production in the Aquatic Plant Lemna”. BioProcessing Journal: 49–56.
    9. Jump up^ Cox, KM; Sterling JD; Regan JT; Gasdaska JR; Frantz KK; Peele CG; Black A; Passmore D; Moldovan-Loomis C; Srinivasan M; Cuison S; Cardarelli PM; Dickey LF (December 2006). “Glycan Optimization of a Human Monoclonal Antibody in the Aquatic Plant Lemna Minor”. Nature Biotechnology. 24 (12): 1591–1597. doi:10.1038/nbt1260. PMID 17128273.
    10. Jump up^ Leng, R A; J H Stambolie; R Bell (October 1995). “Duckweed – a potential high-protein feed resource for domestic animals and fish”. Livestock Research for Rural Development. 7 (1). Archived from the original on March 24, 2005.Scholar search
    11. Jump up^ Lemna“. Integrated Taxonomic Information System. Retrieved 2013-04-13.
    12. ^ Jump up to:ab “GRIN Species Records of Lemna“. Germplasm Resources Information Network. United States Department of Agriculture. Retrieved 2013-04-13.

    General readings

    • Cross, J.W. (2006). The Charms of Duckweed.
    • Landolt, E. (1986) Biosystematic investigations in the family of duckweeds (Lemnaceae). Vol. 2. The family of Lemnaceae – A monographic study. Part 1 of the monograph: Morphology; karyology; ecology; geographic distribution; systematic position; nomenclature; descriptions. Veröff. Geobot. Inst., Stiftung Rübel, ETH, Zurich.

    External links

    • Lemna Ecotox testing Duckweed growth inhibition tests and standardisation
    • OECD Guideline for Lemna Test
    • USDA Plants Profile: North American Species
    • Jepson Manual Treatment: Lemna